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Abstract 
Traditional cross-sectional estimates of hedonic price functions theoretically recover marginal will-
ingness to pay for characteristics, but face endogeneity problems.  Consequently, economists have 
introduced difference-in-differences and other quasi-experimental econometric methods into the 
hedonic model.  Unfortunately, the welfare interpretation of these estimands has not been clear.  
This paper shows that, when they condition on baseline data, quasi-experimental hedonics identify 
the "movement along" the ex post price function from a shock.  It further shows this effect is a 
lower bound on welfare, one which accounts for non-marginal changes and general equilibrium 
effects.  Thus, information about nonmarginal welfare can be recovered using transparent designs, 
without Rosen's "second stage" or more structural models.  The paper illustrates these results with 
an application to toxic facilities' effects on housing prices.  In this case, the lower bound is up to 
20% higher than traditional capitalization approaches. 
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Difference-in-Differences Hedonics 

1. Introduction 

For over half a century, economists have used hedonic price functions as a simple way to model 

quality-differentiated products.  The standard hedonic model uses cross-sectional data and the in-

sight that the derivative of the price function with respect to an attribute equals households' mar-

ginal willingness to pay (WTP) (Rosen 1974).  While working with cross-sections was the standard 

hedonic project for decades, recently economists have drawn attention to the problem of unob-

served attributes that may be correlated with the attribute of interest (Greenstone 2017).  To over-

come this endogeneity problem, they have applied difference-in-differences (DD) and other quasi-

experimental methods to the hedonic econometric model.1 

While the new approach has definite econometric advantages, it seemingly has come at the 

cost of clarity about the estimand:  What economic question it answers is not always clear, or at 

least has not been perceived clearly in the literature.  For example, if we first-difference the data, 

the dependent variable becomes a change in prices, which mixes information from two equilibria.  

Yet households face a tradeoff among products at a point in time, not across time.  

In the housing context, the literature has begun to refer to such changes in prices over time 

as "capitalization" (e.g. Chay and Greenstone 2005, Klaiber and Smith 2013, Kuminoff and Pope 

2014).  The link between such capitalization and the underlying economic model is not immediately 

clear.  For changes to the characteristics of a small subset of houses, the equilibrium price function 

can be taken as constant over a short time period, so DD models can be interpreted within a single 

equilibrium (Palmquist 1992).  But in general, a large change in the supply of an amenity will 

endogenously shift the hedonic price function.  Too, other changes in the economic environment 

taking place over longer time periods also would shift the price function.  In these cases, panel-data 

studies compare prices at two different equilibria in potentially confusing ways.  The confusion is 

                                                            
1 Examples include Bento et al. (2015), Cellini et al. (2010), Chay and Greenstone (2005), Currie et al. (2015), Davis 
(2004, 2011), Greenstone and Gallagher (2008), Haninger et al. (2017), Lang (2018), Linden and Rockoff (2008), 
Mastromonaco (2015), Muehlenbachs et al. 2015, and Pope (2008).  Parmeter and Pope (2013) review this literature.  
Kuminoff et al. (2010) illustrate the importance of using DD hedonic techniques to control for unobservables. 
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compounded by ambiguity about the meaning of language borrowed from the program evaluation 

literature, such as "the capitalization effect," when in fact there are various such effects with differ-

ing interpretations. 

Klaiber and Smith (2013), Parmeter and Pope (2013), and Kuminoff and Pope (2014) have 

argued that, because it combines two equilibria, the capitalization effect answers an ill-defined 

economic question.  Taken together, these papers make two key points.  First, the total change in 

prices from an exogenous change in characteristics is not the same as WTP.  Instead, it conflates 

WTP (defined within the context of one equilibrium) with changes in the price function.  Second, 

estimated cross-sectional price functions are biased if they ignore changes in the function.  Both 

points are correct.  Nevertheless, as I show in this paper, DD hedonic studies can provide meaning-

ful welfare measures.  This paper clarifies the issue by introducing distinctions made in the treat-

ment effect literature when the Stable Unit Treatment Value Assumption (SUTVA) is violated 

(Section 2).  When the hedonic price function shifts endogenously, there are indirect effects on the 

price of all units, regardless of treatment status, which violates the usual SUTVA condition. 

Using this framework, I first show in Section 3 that if they allow for changes in the price 

function over time, quasi-experimental hedonic studies can identify what this literature calls the 

"direct effect" of treatment, or the effect of treatment on a given unit, conditional on the treatment 

program going forward for all other units.  This direct effect has the simple interpretation as the 

movement along the ex post hedonic price function.   

Second, in Section 4 I show that this effect can be interpreted as a lower bound on Hicksian 

equivalent surplus (ES) for a non-marginal change in characteristics of interest, even in the presence 

of endogenous general equilibrium shifts in the price function, shifts in the price function from 

other exogenous factors, and endogenous adjustments to other characteristics.  The bound is similar 

to one discussed many years ago by Bartik (1988).  These results are quite general.  Demands and 

other aspects of the economic environment may change between periods, there are no restrictions 

on heterogeneity in demands, household data are not required, and even repeated cross sections can 

be used.  Thus, quasi-experimental estimates of the hedonic price function alone are sufficient to 
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yield at least a bound on non-marginal changes, even accounting for general equilibrium effects, 

without requiring economists to estimate Rosen's (1974) difficult "second stage" or other more 

structural models.  For truly marginal effects, they collapse to marginal WTP. 

Section 5 illustrates these results with an application to the value of reduced toxic emissions 

in Los Angeles between 1995 and 2000.  Although a lower bound on general equilibrium welfare, 

the estimates are substantial, at about $6.7-7.5 billion for the present value of the realized decrease 

in emissions, or about $62-69 per household annually.  In contrast, the conventional approach to 

capitalization with a time-invariant function gives values about 14-20% lower.  Simply linearizing 

marginal WTP gives estimates that are lower still.  Thus, besides clarifying the interpretation of 

quasi-experimental hedonics, the method suggested here can tighten the lower bound. 

2. Hedonic Capitalization Effects 

2.1 The Hedonic Model 

Although the results of this paper apply to any hedonic context, for concreteness, consider the spe-

cific application of housing price functions.  Let ℋ denote the set of houses in a region with typical 

element h and let ℐ denote the set of households with typical element i.  For ease of exposition, 

assume for now that the region is closed, so there is no migration in or out.  (The extensions in 

Appendix A show this assumption can be relaxed without affecting the interpretation.)  Equilibrium 

in each time period consists of a one-to-one correspondence of households to houses (all households 

occupy a house and all houses are occupied by a household).  Households may rent or own their 

house, and owners rent from themselves. 

At time t, households differ by their income y and their current-period preferences, which 

are represented by a twice differentiable conditional indirect utility function over prices, an amenity 

of interest g, and other characteristics x, 𝑣௜௧(𝑦௜௧-ph, gh, xh), with 𝜕𝑣௜௧/𝜕𝑦௜௧ > 0.  On the supply side, 

the profit function for house h is πh = ph - ch(xh), where the cost function ch( ) is twice differentiable.  

For simplicity, assume ch( ) is constant over time, although this assumption could be relaxed. 

Consider two points in time, denoted t=0 for an initial situation and t=1 in a later situation.  

In each period, prices of houses are determined by the level of the amenities evaluated on the time-
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specific equilibrium price function:  𝑝௛௧  = 𝑝௧(g௛௧ , 𝐱௛௧ ).  The time superscript on the price function 

indicates that equilibrium hedonic prices may shift.  In each period, households maximize utility 

over a continuous choice set defined by the continuously differentiable price function. 

I make the standard hedonic assumption that households have perfect information and are 

in a static equilibrium in each time period.2  Maximizing utility in period t, the household satisfies 

the first-order condition for g:  డ௩೔೟డ௚  =  − డ௩೔೟డ௣ డ௣೟డ௚  .  Using −𝜕𝑣௜௧/𝜕𝑝 = 𝜕𝑣௜௧/𝜕𝑦, this is equivalent to: 

(1) 𝜕𝑣௜௧/𝜕𝑔𝜕𝑣௜௧/𝜕𝑦 = 𝜕𝑝௧𝜕𝑔 .  

Equation (1) is the standard tangency condition from Rosen (1974), with the derivative of the he-

donic function with respect to an amenity equal to marginal WTP at the optimal point. 

Similarly, a landlord's first-order condition for profit maximization for characteristic 𝑥௥ is: 

(2) 𝜕𝑐௛𝜕𝑥௥ = 𝜕𝑝௧𝜕𝑥௥.  

The endogenous amenities x are supplied according to similar tangency condition, with marginal 

cost equal to marginal revenue. 

The basic problem is (i) to estimate these primitive conditions when g or x are endogenous 

and (ii) to make inferences about non-marginal welfare effects from these primitive conditions. 

2.2 Defining Capitalization Effects 

To overcome the first issue, related to estimation, researchers have applied DD and related quasi-

experimental approaches to the hedonic model to identify the effects of exogenous changes in g.  

While effectively addressing an econometric problem, these methods have raised other questions 

about what precisely they identify (Klaiber and Smith 2013 and Kuminoff and Pope 2014). 

If the equilibrium hedonic price function for a housing market changes endogenously be-

cause of a shock to amenities, then the price of a house will change even if its amenities have not.  

In the vocabulary of the program evaluation literature, this is a violation of SUTVA, particularly 
                                                            
2 This assumption continues to underlie majority of work on hedonic markets (Bajari and Benkard 2005, Bishop and 
Timmins 2019, Ekeland et al. 2004, Heckman et al. 2010) as well as structural models of locational choice (Epple et 
al. 2020).  More recent work increasingly addresses dynamic optimization in the presence of transactions costs, which 
may be substantial in applications to housing (Bayer et al. 2016, Bishop and Murphy 2019, Kennan and Walker 2011). 
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the no-interference assumption:  The outcome (price) of an untreated housing unit in the market is 

affected by the fact that other housing units were treated with changes to their amenities.  In the 

presence of interference, a policy scenario has an "indirect effect" even on untreated units plus a 

"direct effect" of treatment on the treated.  Consequently, we must make a distinction between the 

effect of a treatment scenario and the effect of treatment status for a unit, given the scenario.  To 

analyze such effects, we can draw on extensions to the potential outcome framework to consider 

effects defined by an entire policy—that is, by a change in g anywhere. 

In theory, changing the treatment status of just house h by itself could itself have general 

equilibrium effects, which would muddle the distinction between the direct and indirect effects.  

Assumption A1 rules out this problem: 

ASSUMPTION A1 (Local Non-interference).  Let 𝐩ି௛ be the vector of prices for all houses except 
some house h.  For all treatment scenarios and ∀ h, 𝐩ି௛ is invariant to whether h is treated. 

This assumption, which can be taken as a limiting case of Palmquist's (1992) localized ex-

ternality, facilitates the distinction between the effect status of treatment on a particular house and 

the general equilibrium effects of the program.3 

Let g௛௔ be the value of g at house h which is realized under some potential scenario a at t=1 

and let 𝐠ି௛௔  be the (H-1)-dimensional vector of g at all houses except h in scenario a.  Let 𝐱௛௔(g௛௔) 

be the value of x at house h in scenario a, which itself is a function of g௛௔.  Let a* be the scenario 

that was actually implemented, such as a program to clean up toxic waste.  Likewise, let a'  be some 

alternative counterfactual scenario that could have prevailed at t=1, the outcomes under which one 

wants to compare to the outcomes under a*.  With this notation, different scenarios a describe 

different possible distributions of g at t=1. 

I incorporate the violation of SUTVA by allowing for different potential prices at house h 

based not only on gh, but also based on the entire policy vector g.  Under Assumption A1, we can 

write the potential outcome for house h if we were in the counterfactual state (with no houses 

                                                            
3 For similar reasons, Hudgens and Halloran (2008) impose a randomization assumption fixing the number of treated 
units, and VanderWeele and Tchetgen (2011) propose an alternative definition of the direct effect that no longer de-
composes the total effect.  The local non-interference assumption provides an alternative way to address this issue. 
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treated) as 𝑝௛௔ᇱ(g௛௔ᇱ, 𝐱௛௔ᇱ(g௛௔ᇱ)).  The 𝑎′ superscript on 𝑝 indicates that the functional relationship de-

pends on the state of the world (in this case the counterfactual state).  In Figure 1, this price is 

illustrated by pA, from the counterfactual price function evaluated at g௛௔ᇱ.  The potential outcome 

for house h, if the rest of the market were under policy a*, can be written as 𝑝௛௔∗(g௛௔ᇱ, 𝐱௛௔∗(g௛௔ᇱ)) if 

house h were not treated (receiving its counterfactual g௛௔ᇱ) and as 𝑝௛௔∗(g௛௔∗, 𝐱௛௔∗(g௛௔∗)) if house h 

were treated (receiving g௛௔∗).  These are depicted in Figure 1 by prices pB and pC respectively. 

As always, causal effects of a policy must compare the policy scenario, 𝑎∗, to a counterfac-

tual, 𝑎ᇱ.  Two distinctions here should be emphasized about this comparison which differ from 

other common settings.  First, there may be exogenous changes over time.  Thus, in general, the 

equilibrium under 𝑎ᇱ is not the same as in t=0.  Even if a' is "no program" to change g, the distri-

bution of g may be evolving.  Too, even if g would not have changed, pA is not necessarily equal to 𝑝௛଴, as there could be other changes in the economic environment affecting the price function or xh.  

Second, with interference, there are endogenous changes from the policy that require untreated 

units to be evaluated in the policy scenario as well as the counterfactual.  Despite the fact that 

house h is untreated, pB = 𝑝௛௔∗(g௛௔ᇱ, 𝐱௛௔∗(g௛௔ᇱ)) is not necessarily equal to pA = 𝑝௛௔ᇱ(g௛௔ᇱ, 𝐱௛௔ᇱ(g௛௔ᇱ)) be-

cause the treatments at the other houses affect equilibrium prices at all houses, including h. 

Following Hudgens and Halloran (2008) and VanderWeele and Tchetgen Tchetgen (2011), 

define the individual total effect (TE) of policy a* for some house h as  𝑇𝐸௛(𝑎∗)  =   𝑝௛௔∗൫g௛௔∗, 𝐱௛௔∗(g௛௔∗)൯ − 𝑝௛௔ᇱ(g௛௔ᇱ, 𝐱௛௔ᇱ(g௛௔ᇱ)). 
The total effect is the overall effect of treatment by the policy at house h.  In Figure 1, it is equal to 

pC - pA.  It can be decomposed into two parts.  The individual indirect effect (IE) of treatment a* is: IE௛(𝑎∗)  =  𝑝௛௔∗൫g௛௔ᇱ, 𝐱௛௔∗(g௛௔ᇱ)൯ − 𝑝௛௔ᇱ(g௛௔ᇱ, 𝐱௛௔ᇱ(g௛௔ᇱ)). 
IEh represents the effect on the price of untreated houses due to the shifting price function between 

scenarios a' and a*.  It is the result of interference:  Even if house h is untreated, its price may be 

affected by spillovers from treatments elsewhere.  IEh is depicted in Figure 1 by pB - pA. 

The individual direct effect (DE) of treatment a* for h, conditional on the program going 
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forward in the rest of the market, is defined as  DE௛(𝑎∗)  =  𝑝௛௔∗൫g௛௔∗, 𝐱௛௔∗(g௛௔∗)൯ −  𝑝௛௔∗൫g௛௔ᇱ, 𝐱௛௔∗(g௛௔ᇱ)൯. 
DEh represents the effect of re-assigning house h from an untreated to a treated state, while holding 

constant the treatment status of the other houses.  It is depicted in Figure 1 by pC - pB. 

As written, TE, IE, and DE all include any effects mediated through changes in x.  For 

example, improvements in g might motivate households to improve the house in other (observable) 

ways, or trigger resorting with new households changing the house.  Variants of these treatment 

effects that net out the portions mediated through changes in x can be defined for all three.  Define 

the total unmediated effect (TUE) and the direct unmediated effect (DUE) at 𝐱෤௛ respectively by: TUE௛(𝑎∗)  =   𝑝௛௔∗൫g௛௔∗, 𝐱௛௔∗ = 𝐱෤௛൯ −  𝑝௛௔ᇱ(g௛௔ᇱ, 𝐱௛௔ᇱ = 𝐱෤௛) DUE௛(𝑎∗) = 𝑝௛௔∗(g௛௔∗, 𝐱௛௔∗ = 𝐱෤௛) −  𝑝௛௔∗(g௛௔ᇱ, 𝐱௛௔ᇱ = 𝐱෤௛). 
TUE and DUE are the same as TE and DE respectively, except they hold xh constant.  DUE and 

DE both can be identified by DD hedonic methods.  As I show below, DUE is the causal concept 

with the clearest welfare interpretation as a lower bound on welfare.  It represents moving h from 

an untreated to a treated state, while otherwise holding constant the treatment program and holding 

constant xh.  Accordingly, henceforth I shall focus primarily on DUE. 

These individual effects have their respective group averages.  Define the average total and 

direct unmediated effects, respectively, as: TUE(𝑎∗)തതതതതതതതതതത   =   1𝐻 ෍ TUE௛(𝑎∗)௛ , 
DUE(𝑎∗)തതതതതതതതതതത   =   1𝐻 ෍ DUE௛(𝑎∗)௛ . 

More generally, we could define similar averages over any sub-set of houses ℋ′.  In the case of the 

direct unmediated effect we then write DUEℋᇱ(𝑎∗)തതതതതതതതതതതതതത   =   1∑ 1(ℎ ∈ ℋᇱ)௛ ෍ DUE௛(𝑎∗)௛∈ℋᇱ . 
A particular special case is where ℋ′ is simply the subset of treated houses.  Then DUEℋᇱ(𝑎∗)തതതതതതതതതതതതതത is 

the average direct unmediated effect on the treated, or DUET(𝑎∗)തതതതതതതതതതതതത. 
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3. Difference-in-Difference Hedonic Models Identify the Direct Effect 

Either TE(𝑎∗)തതതതതതതതത or DE(𝑎∗)തതതതതതതതത, or their unmediated variants, could be defined as a "capitalization effect."  TE(𝑎∗)തതതതതതതതത captures both the treatment on h and the shifting hedonic price function.  If we wanted to 

forecast the effects of the program on prices, relative to a counterfactual of no program, either TE(𝑎∗)തതതതതതതതത or TUE(𝑎∗)തതതതതതതതതതത would be useful measures.  However, the impact on prices qua prices are of 

limited interest for measuring welfare, except for understanding distributional effects on individu-

als who pay them or receive them as income.  As Kuminoff and Pope (2014) and Klaiber and Smith 

(2013) have emphasized, TUE(𝑎∗)തതതതതതതതതതത is not the average WTP for program a*.  It conflates the direct 

and the indirect unmediated effects.  Indeed, it is hard to give it any welfare interpretation except 

in the special case where the hedonic function does not shift. 

Moreover, without additional assumptions TE(𝑎∗)തതതതതതതതത and TUE(𝑎∗)തതതതതതതതതതത cannot be identified any-

way.  Because 𝑝௛ଵ,௔ᇱ is not observed, we cannot know the indirect effects.4  However, DUE(𝑎∗)തതതതതതതതതതത can 

still be identified because, by definition, it does not reference scenario a'.  It only requires the 

weaker assumption, typical of DD estimators, that changes from 𝑝௛଴ to 𝑝௛ଵ,௔∗ for untreated units are 

the same, on average, as what they would have been for treated units were they left untreated, but 

the policy went forward.  In practice, it allows researchers to use data on observed changes. 

The basic argument can be seen in Figure 1, if we replace pa'( ) with p0( ).  A treated unit 

and its matched control both start at pA.  In scenario a*, the untreated unit moves to pB, and under 

the identifying assumption so would the treated unit (in expectation).  In this example, at untreated 

units g does not change, but that assumption is unnecessary.5  Treated units have an additional 

shock to g, ending up at pC.  Thus, the identified effect from DD is (PC - PA) – (PB - PA) = (PC - PB), 

which is the movement along the ex post hedonic price function from treatment, or DUE.  As shown 

                                                            
4 That is not to say that, if it were of interest, TE could not be identified with additional assumptions or data.  One 
possible assumption is that there are no other changes, so that, if a' were "no policy," then 𝑝௛଴ could be substituted for 𝑝௛௔ᇱ(g௛௔ᇱ) in the expression for TE.  This may be especially plausible under regression discontinuity designs.  Another 
assumption is that observations are available at other, untreated markets which can identify the counterfactual time 
trend.  See Hudgens and Halloran (2008) and Manski (2013).  Crépon et al. (2013) illustrate the idea. 
5 g can change for the untreated, so long as it would have changed in the same way for the treated absent treatment.  
E.g., Chay and Greenstone (2005) and Bento et al. (2015) consider price effects of air quality improvements triggered 
by regulatory thresholds.  One can identify the direct effects of the regulations, still allowing for national time trends. 
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in Section 4, this effect is a lower bound on general equilibrium welfare. 

3.1 Identification and Estimation of Capitalization Effects:  The Linear Case 

For simplicity, consider first a linear model.  For any individual house h, the ex-ante and a* hedonic 

price functions and their difference are, respectively: 

(3a) 

(3b) 

(3c) 

      𝑝௛଴  =  α0 + β0g௛଴  + γ0'𝐱௛଴  + ξh + ε௛଴ , 

    𝑝௛௔∗  =  αa* + βa*g௛௔∗ + γa*'𝐱௛௔∗ + ξh + ε௛௔∗, 𝑑𝑝௛௔∗  =  dαa* + dβa*g௛଴  + βa*𝑑g௛௔∗ + dγa*'𝐱௛଴  + γa*'𝑑𝐱௛௔∗ + 𝑑ε௛௔∗, 
 

where in Equation (3c) the differences are taken from the baseline, not from the unobserved coun-

terfactual.  This model is a variant of the "generalized difference-in-differences estimator" recom-

mended by Kuminoff et al. (2010).  Note the local non-interference assumption A1 is implicitly 

embedded in (3b), as the parameters are independent of g௛௔∗.   

As written, this model assumes true panel data at the micro level, which in the case of hous-

ing is the "repeat sales" model.  However, in practice, it could be applied to repeated cross-sections, 

essentially treating the panel as being at the level of some group (e.g. communities) and using fixed 

effects in lieu of first differencing.6  The application in Section 5 illustrates the approach. 

In any case, if the hedonic price function does not change between (3a) and (3b), then we 

can suppress time-scenario superscripts in the parameters and Equation (3c) collapses to  

(4) 𝑑𝑝௛௔∗  =  β𝑑g௛௔∗ + γ'𝑑𝐱௛௔∗ + 𝑑ε௛௔∗. 

In this case, it is clear that DD hedonic regressions identify β, the marginal effect of a change in the 

attribute, if dε is independent of dg after conditioning on dx. 

However, when the hedonic function does shift, the true model is (3c), so (4) of course is 

mis-specified.  Kuminoff and Pope (2014) refer to this problem as "conflation bias," as the estimates 

conflate marginal WTP at a point in time (i.e. β0 or βa*) with changes in the price function.  As they 

show, conflation bias is an example of omitted variable bias.  Clearly, if g0 and x0 are included in 

                                                            
6 In that case, we would simply replace equation (3c) with the following fixed effects variant: 𝑝௛௧  =  α0(1-D1) + αa*D1 + β0g௛଴(1-D1) + βa*g௛௔∗D1 + γ0'𝐱௛଴(1-D1) + γa*'𝐱௛௔∗D1 + ξc + ε௛௧ , 
where D1 is an indicator for an observation from the second period.  The equation simply stacks equations (3a) and 
(3b) with period-specific coefficients and a fixed effect for community c. 
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the model, as in Equation (3c), the linear model potentially can identify βa*, the ex-post marginal 

WTP under the scenario.  Thus, any flaw in the model arises from failure to properly condition on 

baseline observables, not with the economic logic of differencing prices from two equilibria per se. 

Of course, including g0 and x0 in a linear model may raise additional estimation issues.  

While allowing for an unobserved time invariant effect, ξh, Equations (3) still require a conditional 

zero mean assumption on dε to estimate the full set of parameters.  Unfortunately, dε may well be 

correlated with g0:  For example, houses near landfills may be depreciating in unobserved ways.  

However, important (if incomplete) information can still be identified under a weaker conditional 

independence assumption, in which dga* is independent of dεa* conditional on g0 and the other 

observables: (dε ⊥ dg | g0, x0, dx).  This would allow identification of βa*, even if β0 were biased. 

The fact that it is the ex post hedonic price parameter, βa*, that is identified under the weaker 

assumptions is the crucial point here.  In the context of the linear model, this parameter represents DUETതതതതതതതത (per unit g), the direct effect netting out the mediated effect of any changes in x.  The product 

βa*·dga* is the movement along the ex post hedonic price function in the dimension of g. 

3.2  Estimating Direct Effects Without Linearity 

The preceding insight extends to nonlinear models like matching estimators as well.  To simplify 

the exposition, consider the case of a binary treatment, which occurs only in the second period:  g0=0, g௔∗ ∈ {0,1}.7  Examples might include cleanup of Superfund sites (Gamper-Rabindran and 

Timmins 2013, Greenstone and Gallagher 2008), discovery of a cancer cluster (Davis 2004), 

closing large polluting facilities (Currie et al. 2015, Mastromonaco 2015), arrival of a sex offender 

(Linden and Rockoff 2008) and so forth.  Relaxing the linearity inherent in Equations (3), we can 

define the potential outcomes using the following semi-parametric assumptions: 

(5a) 

(5b) 

(5c) 

  𝑝௛଴ = 𝛄଴ᇱ𝐱௛଴ + ε௛଴ , 𝑝௔∗൫g௛௔∗ = 0൯ =   𝛄୥భୀ଴௔∗ ′𝐱௛௔∗ + ε୥ೌ∗ୀ଴,௛௔∗  , 
𝑝௔∗൫g௛௔∗ = 1൯ = 𝛄୥భୀଵ௔∗ ′𝐱௛௔∗ + ε୥ೌ∗ୀଵ,௛௔∗ , 

                                                            
7 The model of this sub-section could be extended to include multi-valued or even continuous treatments as suggested 
by Imbens (2000) and Hirano and Imbens (2004).  See, e.g., Muehlenbachs d (2015) for a hedonic application. 
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where the γ vectors include an intercept term and E[ε୥೟,௛௔∗ |𝐱] need not be zero.  Equation (5b) rep-

resents houses that are not treated ex post, Equation (5c) those that are.  This model controls for x 

with regressions that differ by treatment status, but allows the effect of g, which is embedded in the ε's, to have any arbitrary form (e.g. Heckman et al. 1997).  It again implicitly relies on the local 

non-interference assumption A1, as 𝛄୥௔∗ does not depend on whether any one house h is treated. 

This model requires a conditional mean independence assumption on differences in unob-

servables, slightly weaker than the linear model.  For example, if we want to know the effect of the 

observed policy a* relative to some counterfactual, then we want to estimate the Average Treatment 

on the Treated and we require the following assumption. 

ASSUMPTION A2 (Conditional mean independence in differences for the treated): 

(6) E[ε୥భୀ଴௔∗ − ε଴ | x0, g௔∗ = 1]  =  E[ε୥భୀ଴௔∗ − ε଴ | x0, g௔∗ = 0]. 

In words, after conditioning on x0, the houses that are actually treated by the policy (g௔∗
=1) would 

have had the same trend (on average) in unobserved time-varying effects, had they not been treated, 

as the untreated houses (g௔∗
=0). 

Under these conditions, plus the usual requirement of overlapping support, a conditional 

DD estimator can identify the DUEതതതതതത for the treated.  This is stated in the following lemma. 

LEMMA.  Given A1, A2, and the model of Equations (5), 

(7) 

E ቂቀ𝑝௔∗൫g௔∗ = 1൯ − 𝛄୥భୀ଴௔∗ ′𝐱௔∗ቁ − ቀ𝑝଴ − 𝛄୥భୀ଴௔∗ ′𝐱଴ ቁ ห 𝐱଴, g௔∗ = 1൯ቃ      −E ቂቀ𝑝௔∗൫gଵ = 0൯ − 𝛄୥భୀ଴௔∗
′𝐱௔∗ቁ −  ቀ𝑝଴ − 𝛄୥భୀ଴௔∗

′𝐱଴ ቁ ห 𝐱଴, gୟ∗ = 0൯ቃ = E ቂ൬ቀ𝑝௔∗൫g௔∗ = 1൯ − 𝑝௔∗൫gଵ = 0൯ቁ |𝐱଴ , g௔∗ = 1൰       − 𝛄୥భୀ଴௔∗ ′ ቀ(𝑑𝐱|𝐱଴, g௔∗ = 1) − (𝑑𝐱|𝐱଴, g௔∗ = 0)ቁቃ = DUET(𝑎∗)തതതതതതതതതതതതത. 
Proof:  The first equality follows immediately from Equations (5) and Assumption A2.  The second 
follows from Equations (5) and Assumption A1.  The third follows from the definition of DUET. DUET(𝑎∗)തതതതതതതതതതതതത might be estimated using a regression-adjusted DD matching estimator (e.g. 

Heckman et al. 1997).  Muehlenbachs et al. (2015) and Haninger et al. (2017) use this approach in 

hedonic applications.  For the linear case, the parameter β1 represents the marginal contribution of 
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g along the ex post hedonic, holding constant any effects mediated through x.  The estimand defined 

in the Lemma recovers an analogous effect, for those houses treated by the policy, but using weaker 

econometric assumptions. 

3.3.  Extensions 

The following section is devoted to the economic interpretation of this estimand.  Before turning to 

that discussion, two comments are in order.  First, DUEതതതതതത on the treated, which is identified using DD 

hedonics, arguably identifies effects at the most salient part of the distribution, certainly when eval-

uating the policy that went into effect.  Nevertheless, as shown in appendix A.1, we also can identify 

treatment effects at untreated units, which would be useful for evaluating counterfactual policies—

so long as the observed price function is still representative of the ex post equilibrium.  For example, 

we can always compare the actual policy to an alternative counterfactual. 

Second, in some cases one may not want to impose the conditional mean independence 

assumption.  Although it is weaker than those required for the standard OLS model, one may be 

concerned that changes in unobservables are correlated with changes in g.  If so, one could invoke 

additional exclusion restrictions and use instrumental variables.  For example, Chay and Greenstone 

(2005) and Bento et al. (2015), considering hedonic regressions of housing prices on air quality, 

argue that recessions or local economic shocks can simultaneously reduce housing prices in unob-

served ways while improving air quality by dampening economic activity, thus biasing difference-

in-differences (or fixed effects) hedonic estimates of air quality downward.  They argue that 

national ambient air quality thresholds are a plausible source of exogenous variation in air quality. 

Similarly, the exogeneity of g can be made more credible using regression discontinuity 

(RD) designs (e.g. Cellini et al. 2010, Chay and Greenstone 2005, Gamper-Rabindran and Timmins 

2013, Greenstone and Gallagher 2008, and Lang 2018).  In principle, RD designs can be used in 

either panel or cross-sectional settings.  In the neighborhood of the discontinuity, treatment is as 

good as randomly assigned, as in a controlled experiment (Lee and Lemieux 2010).  This has two 

key implications for interpreting hedonics.  First, the local average treatment effect is the same as 

the average treatment effect on the treated, so RD designs identify either.  Second, RD estimates 
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are unbiased even when researchers do not include a full set of controls, so long as they do not 

jump discretely along with the policy (Bayer et al. 2007), though they are less efficient.  This sug-

gests it may not always be necessary to control for changes in x not caused by the policy (see 

Appendix A.4 for further discussion). 

4. The Welfare Interpretation of Capitalization Effects 
The previous section showed that quasi-experimental hedonic studies can identify DUET(𝑎∗)തതതതതതതതതതതതത, the 

direct unmediated effect on the treated, if they allow for changing hedonic functions where appro-

priate.  DUET(𝑎∗)തതതതതതതതതതതതത is a well-defined economic concept.  It is the difference along the ex post he-

donic price function between the values of a house at the new and old levels of the amenity respec-

tively, or equivalently the cumulated marginal values along the price function (not demand 

function), netting out effects mediated through dx:  pa*(ga*, x0) − pa*(g0, x0) = ׬ డ௣ೌ∗(୥,𝐱బ)డ୥ 𝑑g௔∗୥଴ . 
What is the economic interpretation of this estimand?  In this section, I show that, summed 

over houses, it represents a lower bound on the total welfare effects of the policy for all households, 

accounting for non-marginal changes in g and general equilibrium price effects, mobility responses, 

and endogenous responses to x.  The specific measure bounded is the Hicksian equivalent surplus 

(ES) for all these effects.  Equivalent surplus is similar to the equivalent variation, but differs insofar 

as it measures the willingness to accept (WTA) to forego the realized change in g, in contrast to the 

g's that would be chosen when foregoing the price change.8 

The argument for this lower bound on ES is quite simple in a partial equilibrium context 

where there are no supply or implicit price effects on x and no effects on profits, so that the only 

effects are the change in the distribution of g (Griffith and Nesheim 2013).  By a simple revealed 

preference argument, the household consuming g1 could save expenditures amounting to ׬ డ௣ೌ∗ௗ୥ 𝑑g୥ೌ∗୥బ  by consuming g0 instead.  But because it does not choose to do this, the household's 

minimum WTA must be greater than this amount.   

                                                            
8 In other words, it is the change in money that holds utility constant at ex post levels for a change in g, or 
equivalently, the area under the Hicksian demand curve for g (evaluated at ex post utility) between g0 and 
g1.  Whereas equivalent variation is more appropriate for price changes, ES often is used for exogenous 
changes in quantities or qualities (see Hicks 1943 or Freeman et al. 2014, Ch. 3). 
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This can be seen in Figure 2, which depicts a Marshallian bid function for g intersecting the 

two marginal price functions at the chosen quantities g0 and g1.  It also depicts a Hicksian demand 

function evaluated at u1, which intersects the Marshallian function at g1.  Hicksian ES is the entire 

shaded area under the Hicksian demand function from g0 to g1.  (In contrast, equivalent variation 

would be the area under the function from the level of g chosen under p0 to achieve u1, depicted 

here as g(p0( ), u1), up to g1.)  Clearly, ׬ డ௣ೌ∗ௗ୥ 𝑑g୥௔∗୥଴ , in darker shading, is a lower bound on ES = ׬ ℎ(𝑔, 𝑢ଵ)𝑑g୥௔∗୥଴ .  The argument is analogous to the fact that a Paasche index is a lower bound on 

the value of a quantity change. 

In fact, under Assumption A1 (local non-interference) and an additional assumption of non-

negative profits, this bound remains true even in general equilibrium with an endogenous change 

in the entire hedonic price function, endogenous changes in the supply of x, and resorting of house-

holds.  The required assumption on profits is: 

ASSUMPTION A3 (non-negative profits).  The change in aggregate profits due to adjustments in x 
from their counterfactual level are non-negative when evaluated at the counterfactual level of g:  ෍ ൣ൫𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔ᇱ)൯ − ൫𝑐(g௛௔ᇱ, 𝐱௛௔∗) − 𝑐(g௛௔ᇱ, 𝐱௛௔ᇱ)൯൧௛ ≥ 0. 
This assumption, which nests a zero-profit condition, seems intuitive:  landlords would not make 

the investment to change x unless it increased profits. 

Defining HT as the number of treated houses, we can state the following Proposition, the 

key result of this section. 

PROPOSITION 1.  Given A1 and A3, 𝐻் ∙ DUET(𝑎∗)തതതതതതതതതതതതത ≤ (ES + ∆profits) for an exogenous change in 
the distribution of g.  The result holds even when hedonic prices, households, and landlords adjust 
to the change endogenously, with these effects included in the welfare measure.  It also holds when 
there are other changes in the economic environment potentially shifting the price function or x 
over time, but does not include these in the welfare measure. 

Proof:  See Appendix B. 

The proposition states that DUET(𝑎∗)തതതതതതതതതതതതത, times the number of treated units, is a lower bound on 

welfare for all households, whether affected directly or indirectly (by the changing price function).  

Note that, although panel data are used to control econometrically for unobservables, DUET(𝑎∗)തതതതതതതതതതതതത is 
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the average movement along the ex post hedonic function and ES uses the ex post expenditure 

function.  Thus, only the ex post situation is relevant for the interpretation.  If demands or tastes 

change, the result remains valid, but the evaluation is from the perspective of ex post preferences. 

The formal proof follows the outline of a verbal argument in Bartik (1988), clarifying a few 

ambiguous points.9  Denote the expenditure function for household i as ei(p( ), u) where p() is the 

hedonic price function and the price of other goods is normalized to one.  It is the solution to the 

expenditure minimization problem when the household faces hedonic price function p().  Denote 

the restricted expenditure function as 𝑒̃௜(p(g, x), g, x, u); it is the solution to the expenditure mini-

mization problem when the household is constrained to choose the bundle (g, x).  The basic idea is 

to define the welfare measure as follows: 

(8) 
𝑑𝑊 =   ෍ ቂ𝑒̃௜ ቀ𝑝௔ᇲ ቀg௜൫௔ᇲ൯௔ᇲ , 𝐱௜൫௔ᇲ൯௔ᇲ ቁ , g௜൫௔ᇲ൯௔ᇲ , 𝐱௜൫௔ᇲ൯௔ᇲ , 𝑢௜௔∗ቁ − 𝑒௜(𝑝௔∗( ), 𝑢௜௔∗)ቃ௜         + ෍ ቂቀ𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔ᇲ൫g௛௔ᇲ, 𝐱௛௔ᇲ൯ቁ − ቀ𝑐൫g௛௔ᇲ, 𝐱௛௔∗൯ − 𝑐൫g௛௔ᇲ, 𝐱௛௔ᇲ൯ቁቃ௛ . 

where ൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯ represent the characteristics, in the counterfactual scenario a', of a house ac-

tually occupied by household i in the counterfactual scenario.  The first term in square brackets is, 

by definition, ES for the change in g.  The second term in brackets is the change in landlord profits.  

It is the change in rents, from the shift in the hedonic price function, adjustments in x and exogenous 

changes in g, minus the change in costs, evaluated at baseline levels of g. 

As shown in Appendix B, using Assumption A.3, this measure is equivalent to: 

(9) 

𝑑𝑊 =   ෍ ൣ𝑒̃௜൫𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗൯ − 𝑒௜(𝑝௔∗( ), 𝑢௜௔∗)൧௜         +  ෍ ൣ൫𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔ᇱ)൯ − ൫𝑐(g௛௔ᇱ, 𝐱௛௔∗) − 𝑐(g௛௔ᇱ, 𝐱௛௔ᇱ)൯൧௛         +  ෍ ൫𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗)൯.௛
 

                                                            
9 Bartik's argument actually was that the movement along the ex ante price function would be an upper bound on 
welfare.  He does not link this measure to what can be identified econometrically.  As noted in the previous section, it 
is the ex post price function that is identified with panel data, which provides a lower bound by similar logic.  Addi-
tionally, Bartik (1988) does not provide a mathematical poof.  Kanemoto (1988) provided another related bounding 
proof.  However, his model is quite different, involving capitalization into land values in long-run equilibrium.  Fur-
thermore, he shows pre-policy prices are a lower bound on a rather unusual version of compensating variation for a 
subset of the economy, whereas my bound uses the identified ex post prices as a bound on conventional ES. 



17 

Now, in the first line, the term in square brackets is non-negative for each i:  the value of a con-

strained expenditure minimization problem is no less than the value of an unconstrained expendi-

ture minimization problem at the same prices and utility.  Additionally, the second line is non-

negative by Assumption A3.  Meanwhile, the third line is the observed measure, the sum of price 

changes along the ex post price function holding x constant.  As the desired welfare measure is the 

observed value plus a positive number, the observed value is less than the change in welfare. 

Thus, there is a clear welfare interpretation of capitalization effects in a DD framework.  

They can identify a lower bound on ES for changes in g.  (For decreases in g, the lower bound 

means the estimate is "too negative," which is the same as an upper bound on the welfare loss, in 

absolute values.)  In general, the gap represented by the bound is unknown.  However, we can 

expect that it better approximates the true value for smaller shocks.  Indeed, for truly marginal 

changes, the movement along the price function is the derivative, which is equal to marginal WTP 

by the tangency condition (Equation [2]).  In Appendix C, I present simulations finding the lower 

bound welfare estimates for improvements in g range from 75% of ES for large changes to 92% 

for smaller (but non-marginal) changes. 

Moreover, in Appendix A, I show that this welfare interpretation extends to more general 

settings than those used in the main body of the paper.  First, in A2, I show that, though for expo-

sitional simplicity it was easier to develop the model as a closed city, all the results extend to open 

cities.  Second, in A3, I show that it also extends to a world with transactions costs, as long as those 

costs are super-additive in a network of multiple moves.  Finally, in A4, I consider a more negative 

result:  the unmediated effects considered so far require controlling for changes in x if they are 

either correlated with g or caused by the policy.  However, when these conditions are violated, 

additional bounding results apply. 

5. Application to Changes in Toxic Air Emissions 
In this section, I illustrate DD hedonic studies with an application to changes in exposure to plants 

emitting toxic air pollutants, a question also considered by Currie et al. (2015) and Mastromonaco 

(2015).  In particular, I estimate a variant of Equation (3c), using two cross sections of individual 
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houses and treating local geographic areas as the panel unit (see note 6).  My strategy resembles 

that of Currie et al. (2015) in spirit.  They treat plants as observations, looking at the effect of plant 

openings and closings on average property values within a 1-mile ring of the plant, relative to the 

effect at 1-2 miles.  In contrast, I have microdata on housing transactions, so treat houses as obser-

vations, looking at the effect of a changing number of plants within a 2-mile ring of the house, 

while controlling for conditions at 1-mile grid cells using fixed effects.  I also consider controlling 

for changing conditions using 2-mile-cell-by-year fixed effects.  Additionally, whereas Currie et 

al. assume constant hedonic coefficients (as in Equation 5), to avoid conflation bias I allow the 

hedonic coefficients to evolve between the two time periods, as in Equation (3c).  Thus, this ap-

proach identifies DUE(𝑎∗)തതതതതതതതതതത and the lower bound on welfare. 

The specific application is to the Los Angeles area (all of LA and Orange Counties and 

portions of Riverside, San Bernardino, and Ventura Counties), between 1995 and 2000.  Data on 

toxic air emissions come from the US EPA's TRI database.  As discussed by Currie et al. (2015) 

and Mastromonaco (2015), TRI data are good at identifying polluting plants, but exhibit measure-

ment error in emission levels.  Accordingly, I focus on the extensive margin of whether a plant is 

emitting at all, rather than emission levels.  These comings and goings of plants too can be measured 

with error, if plants fall below the TRI reporting threshold rather than actually shut down.  Currie 

et al. overcome this problem by merging TRI data to confidential data on plants' operations.  Un-

fortunately, those data are not available to me.  However, I approximate their approach by coding 

a plant as operating at year t if it appears in the TRI database at any point between t and t-8 and t 

and t+8.  Thus, plants that come, go, and return from the TRI reports are assumed to be operating 

throughout the period.  (Eight years takes the 1995 data back to the beginning of the TRI program.) 

Exposure to TRI facilities was imputed to a house in two ways.  My main approach weights 

facilities by their distance, with a facility having a weight of max{0, 1- ½Distance}, where Distance 

is the distance in miles from the facility to a given census block.  Thus, e.g., a facility 2 or more 

miles away from a census block receives a weight of zero, a facility 1 mile away has a weight of 

½, and a facility co-located in the block has full weight.  As an alternative, I use the raw count of 



19 

facilities within two miles.  The top panel of Table 1 gives summary statistics for these measures, 

by year.  It shows a decline in exposure to TRI, with the average house experiencing an 8% reduc-

tion in the number of facilities.  Finally I take the square root of these counts plus 1.  This transfor-

mation approximates more complicated polynomials while restricting the function to be monotonic 

in pollution. 

Data on real estate transactions were acquired from Fidelity National Data Service, a market 

research firm providing proprietary data.  They include the sales price, date of the sale, number of 

bedrooms, number of bathrooms, square footage, lot size, year built, and the census block in which 

it is located.  After restricting the data to single family homes and arm's length transactions, and 

after discarding certain outliers, the data include nearly 140,000 observations.10  The bottom panel 

of Table 1 summarizes the housing data.  Housing values increased over the period and the housing 

stock aged, but other characteristics remained fairly constant. 

Typically, researchers use census tracts or zip codes as geographic units for constructing 

spatial fixed effects.  However, these geographic units may evolve over time.  Additionally, they 

are based on population density, so their sizes vary widely.  This is problematic if small geographies 

are systematically more homogeneous than large ones, so that there is more variation with which 

to estimate effects from the latter, and if large geographies also vary systematically in unobserved 

ways from other areas.  Finally, geographies creating homogeneous areas (like Census tracts) may 

inflate the spatial scale of very localized effects by systematically aggregating the affected area to 

similar areas nearby.  For all these reasons, arbitrary zones like a 1-mile grid are preferable to 

census geographies when controlling for spatial fixed effects (see Banzhaf and Walsh 2008).  Ac-

cordingly, I impose a 1 square mile grid over the area, using the grid cells for spatial fixed effects. 

Identifying DUE(𝑎∗)തതതതതതതതതതത requires changes in the number of active TRI sites to be orthogonal to 

changes in unobserved factors affecting prices, after conditioning on baseline conditions and fixed 

                                                            
10 I drop all observations with housing prices below $50,000 or above $2m, with lot sizes smaller than 1000 sq. feet or 
larger than 10 acres, with living area smaller than 500 sq ft or larger than 5,000 sq ft, with zero bathrooms or more than 
7.5 bathrooms, or more than 10 bedrooms.  At the low end, these observations likely reflect either coding errors or non-
primary residences; at the high end, they represent extremely grand houses, where mis-specification of a linear regres-
sion is likely to pose problems.  These dropped observations account for about 2.7% of the data. 
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effects.  To gauge the plausibility of this assumption, I look at pre-existing price trends.  In partic-

ular, I regress 1990-1995 prices on future 1995-2000 changes in exposure interacted with a time 

trend, plus contemporaneous exposure and the hedonic variables listed in Table 1.  Table 2 shows 

the results for the coefficient of interest, the interaction between the time trend and the future change 

in facilities.  It shows the change, in percentage points, in annual housing appreciation over 1990-

95, for each additional plant to which the house would become exposed between 1995 and 2000.  

The coefficients are negative and statistically significant at conventional levels for the unweighted 

model, and marginally so for the weighted model.  However, they are not economically meaningful.  

A one-plant increase in future exposure reduces 1990-95 appreciation by 0.0001 to 0.0003 percent-

age points per year, or less than $1 at the mean of the data.  I also consider more flexible variants 

of this model, interacting cubic time trends with each of four categories of changes in future expo-

sure:  Increases, no change, a 1-plant decrease, and a decrease of 2+ plants.  Figure 3 shows the 

results.  As seen in the graph, housing prices in LA were declining in the early 1990s after a long 

boom, but note that the price levels are not monotonic by category:  Prices in areas experiencing 

no change in pollution are higher than those showing either increases or decreases.  More im-

portantly, the trends are fairly parallel—remarkably so for the last three years.  This evidence reas-

suringly suggests that TRI sites were not closing in areas that were already gentrifying. 

For the main model of interest, I regress log price on the square root of nearby TRI sites, 

cubic functions of lot area, living area, bathrooms, bedrooms, and age, plus time invariant fixed 

effects for the grid cell, and year-quarter dummies to pick up proportionate housing price inflation.  

Table 3 presents the results using distance-weighted exposure.  The table shows results for six sep-

arate regressions in separate columns, which can be grouped into three pairs.  The three pairs differ 

by the set of fixed effects:  1-mile grid fixed effects, 1-mile grid fixed effects plus county-year 

effects, or 2-mile grid-by-year fixed effects.  Within each pair, Model A represents the conventional 

approach with a time-invariant hedonic price function (i.e., Equation(4)), whereas Model B uses 

the time-varying approach advocated in this paper. 

The first three rows present the pollution coefficients from the hedonic regressions, with 
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standard errors, clustered by grid cell, in parentheses.  All pollution coefficients are negative and 

statistically significant.  Nevertheless, they should be interpreted with care.  As discussed above, 

the coefficient in the time-invariant model likely suffers from conflation bias.  Additionally, in the 

time-varying model the 1995 coefficients are only identified under the assumption that changes in 

unobservables are uncorrelated with baseline conditions, and anyway are not used to construct the 

lower bound on ES.  The 2000 coefficients are identified under the weaker assumption that changes 

in unobservables and changes in exposure are independent, conditional on baseline exposure and 

other variables.  Interestingly, for all three models, the time-invariant coefficient falls within the 

interval bracketed by the corresponding two time-varying coefficients, although as discussed by 

Kuminoff and Pope (2014) this pattern need not always hold.  The 2000 coefficient is higher than 

the time-invariant model, so in this application it appears conflation bias is downward. 

The next panel shows the respective capitalization effects from the 1995-2000 change in 

TRI exposure, using the 2000 price function in the case of Models B.  The estimates shown, in 

$ billions, aggregate the predicted price increases, re-weighting the data so as to reflect the number 

of owner-occupied housing units in each census tract, to obtain the total estimated capitalization 

for the LA owner-occupied housing stock.  When using Model B and the ex-post function to meas-

ure the effects, this measure represents DUETതതതതതതതത for the observed 1995-2000 change in exposure, 

which is the lower bound on the general equilibrium ES.  The standard errors (parentheses) and 

confidence intervals (brackets) are based on a cluster bootstrap.  The bootstrap accounts for sam-

pling error in estimation, forecasting (i.e. predicting direct effects), and reweighting tracts. 

Using Models A, the conventional approach yields capitalization effects ranging from $5.8b 

to $6.5b.  Using Models B, DUETതതതതതതതത ranges from $6.7b to $7.5b.  These estimates represent a present 

value for what presumably is a permanent shock to amenities.  With about 5.4m owner-occupied 

housing units in the study area, and at a discount rate of 5%, these values for DUETതതതതതതതത work out to 

$62-$69 per LA household per year.  Thus, in this case, even the lower bound measure is substantial 

and may be informative for policy.  The last row of the panel directly compares the estimates of DUETതതതതതതതത from columns B to the conventional capitalization approach in columns A.  For this appli-
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cation, the conventional approach gives estimates that are $0.8b to $1.2b, or 14-20 percent, higher.  

Moreover, the differences are statistically significant.  Thus, not only does the approach suggested 

in this paper bring clarity to the estimand as a lower bound on welfare, in this case it also is attended 

by a tighter bound.  Finally, comparing across models, we see that allowing for time-varying fixed 

effects (as in Models 2 and 3) does not appear to close the gap or reduce conflation bias:  Time-

varying coefficients are required. 

The last panel of Table 3 offers another welfare measure often presented, the linearized 

marginal WTP.  The approach computes the derivative of the hedonic function at each point, inter-

preted as marginal WTP, and multiplies this marginal value by the change in g.  Typically, these 

marginal values are evaluated at the baseline points, so for Models B they now are off the 1995 

function.  (In the case of Models A, these estimates would mechanically be the same as those from 

the previous panel if the hedonic function were linear; any differences are due to non-linearities.)  

We now have the reverse result:  the lower coefficients for 1995 in the time invariant model result 

in lower estimates of marginal WTP.  However, these estimates cannot be directly compared to the 

capitalization results, for three reasons.  First, whereas (for Models B) the capitalization estimates 

are a lower bound on a general equilibrium version of ES, linearized marginal WTP is an upper 

bound on a partial equilibrium version of Hicksian compensating surplus (CS).  As ES is likely 

higher than CS, the "upper bound" can still be lower.  Second, they use the 1995 coefficients instead 

of the 2000 coefficients.  Third, those coefficients are only identified under stronger assumptions. 

These general patterns are insensitive to alternative modelling strategies, including using 

the raw count of TRI sites instead of the distance-weighted count and using 0.5 or 2-mile grid cells 

instead of 1-mile grid cells.  These results are available upon request. 

6. Conclusions 
For decades, economists have used the hedonic model to estimate demands for the implicit charac-

teristics of differentiated commodities, including otherwise unpriced local public goods and amen-

ities.  The traditional cross-sectional approach to hedonic estimation has recovered marginal WTP 

for amenities when unobservables are conditionally independent of the amenities, but has been 
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criticized as biased when this condition is not met (Greenstone 2017). 

In response, economists have introduced panel econometric models using DD and related 

approaches to identify capitalization effects.  Unfortunately, the interpretation of these effects has 

not been clearly perceived in the literature, perhaps because there is a range of meanings to the 

word "capitalization" and "causal effect" when the price function shifts.  In this paper, I show that 

DD and related hedonic methods can identify what is known in the causal literature as the "average 

direct effect" on prices of a change in amenities, which in this case can be interpreted as a movement 

along the ex post hedonic price function.  I further show that this is a lower bound measure on 

Hicksian ES.  Simulations suggest the lower bound provides valuable information, on the order of 

75% to 92% of the actual equivalent surplus. 

These results have two implications for hedonic research.  First, researchers can employ 

DD and other quasi-experimental methods to overcome estimation problems, while maintaining a 

clear connection to the underlying economic model, a point that sometimes has been challenged.  

Second, from those estimates they can recover bounds on non-marginal welfare measures, without 

turning to Rosen's (1974) "second stage" or more structural approaches. 

Future work might consider how quasi-experimental methods might be extended to account 

for price and distributional effects.  For example, Crépon et al. (2013), Hudgens and Halloran 

(2008), and Manski (2013) propose ways to identify indirect effects using variation in treatment 

programs across groups (markets, in the hedonic context), while still identifying direct effects from 

variation in treatment assignment within a group.  Such methods might allow researchers to identify 

total price effects, and hence transfers among subpopulations of buyers and sellers.  As Sieg et al. 

(2004) discuss, such price changes can have important distributional welfare effects. 

Additional work might consider ways to average different bounds to improve the approxi-

mation.  Some quasi-experimental strategies can plausibly identify effects in multiple cross-sec-

tions, especially when they use RD or IV strategies.  Examples include Greenstone and Gallagher 

(2008), Gamper-Rabindran and Timmins (2013), Gopalakrishnan et al. (2011), and Haninger et al. 

(2017).  When they do, there is at least the potential to identify separate effects in two or more cross 
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sections.  If the movement along the hedonic price function can be estimated in the ex ante period 

as well as the ex post, it would be possible to construct an upper bound analogous to the lower 

bound discussed here (Bartik 1988).  If so, it may be further possible to average these effects to get 

a second-order approximation to welfare, as suggested by Banzhaf (2020).   
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Figure 1.  Defining Capitalization Effects 

 
Figure 1 illustrates the indirect effect (IE), direct effect (DE), and total effect (TE) of a policy shifting the distribution 
of an amenity g.  The policy shifts the hedonic price function from pa'( ) to pa*( ).  Even the price of untreated houses 
are affected by this shift, moving from pA to pB, which is IE.  Treated houses move from pA to pC, which is TE for these 
units.  This total effect can be decomposed into IE+DE.  
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Figure 2.  Bounds for ES for Changes in Characteristics 

 
Figure 2 shows the Hicksian Equivalent Surplus (ES) as the area under the Hicksian demand curve h( ) from g0 to ga*.  
A partial-equilibrium version of the lower bound is illustrated by the fact that this area exceeds the movement along 
the price function, or the area ׬ డ௣ೌ∗ௗ୥ 𝑑g୥ೌ∗୥బ .  The text shows this bound extends to general equilibrium. 
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Figure 3.  Pre-existing Trends in Housing Prices. 

 
Figure 3 shows 1990-1995 mean predicted prices for four categories of houses, those with 1995-2000 
decreases in TRI exposure of 2+ plants, a decrease of one plant, no change, and increases in expsoure. 
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Table 1.  Summary Statistics of Housing Amenities, by Year 

 1995 Mean  
(Std. Dev.) 

2000 Mean 
 (Std. Dev.) 

A.  Measures of TRI Exposure 

No. TRI facilities within 2 miles 2.50 
(4.31) 

2.29 
(3.80) 

Distance-weighted No. TRI facil-
ities within 2 miles 

0.74 
(1.44) 

0.68 
(1.3) 

B.  Structural Characteristics   

Sale Price 193,736 
(129,691) 

270,914 
(190,782) 

Lot Size (sq. feet) 9,617 
(14,285) 

9,979 
(16,736) 

Living Area (sq. feet) 1,672 
(640) 

1,723 
(701) 

Bedrooms 2.05 
(0.73) 

2.09 
(0.82) 

Bathrooms 3.20 
(0.84) 

3.22 
(0.92) 

Age 31.13 
(20.86) 

36.15 
(21.71) 

 

 

Table 2.  Pre-Existing Trends in Housing Prices 

 
Weighted Number of  

Facilities within 1 mile 
(1) 

Number of Facilities  
within 1 mile 

(2) 
Time Trend x 1995-2000  
Change in facilities  

-0.000272 
(0.000150) 

-0.000123 
(0.0000465) 

R2 0.78 0.78 
This table shows the coefficients from regressing housing transactions between 1990 and 1995 on 1995-
2000 changes in the number of TRI facilities within 1 mile interacted with a time trend.  The regressions 
control for time trends (without interaction), contemporaneous TRI exposure, the hedonic variables listed 
in Table 1, and 1-mile grid-cell fixed effects.  Standard errors clustered by grid cell reported in parentheses. 
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Table 3.  Results of Application to TRI data. 

 Model 1 
1 mi grid FE 

Model 2 
1 mi grid FE + County-Year FE 

Model 3 
2 mi grid–Year FE 

 Model 1A Model 1B Model 2A Model 2B Model 3A Model 3B 
Estimated Coefficients 
Sqrt TRI facilities 
(Time Invariant) 

-0.1313 
(0.0137)  -0.1375 

(0.0137)  -0.1466 
(0.0111)  

Sqrt TRI facilities 
(1995)  -0.1047 

(0.0213)  -0.0962 
(0.0221)  -0.0526 

(0.0103) 
Sqrt TRI facilities 
(2000)  -0.1493 

(0.0156)  -0.1653 
(0.0161)  -0.1657 

(0.0135) 
Capitalization Effects 
Movement along 
price function, $b 
 [95% CI] 

5.917 6.732 6.200 7.440 6.378 7.495 
(0.569) (0.622) (0.601) (0.710) (0.478) (0.579) 

[4.802 - 7.033] [5.513 - 7.952] [5.023 - 7.378] [6.048 - 8.831] [5.442 - 7.314] [6.360 - 8.630] 

Difference from 
Model A [95% CI] 

 0.815  1.239  1.117 
 (0.367)  (0.423)  (0.170) 
 [0.095 - 1.535]  [0.411 - 2.068]  [0.784 - 1.450] 

Linearized Marginal WTP 

Marginal Value x 
dg, $b [95% CI] 

5.833 4.650 6.108 4.274 6.510 2.334 
(0.583) (0.823) (0.589) (0.840) (0.525) (0.394) 

[4.690 - 6.977] [3.036 - 6.264] [4.954 - 7.261] [2.628 - 5.921] [5.480 - 7.539] [1.563 - 3.106] 

Difference from 
Model A [95% CI] 

 -1.183  -1.834  -4.175 
 (0.513)  (0.628)  (0.567) 
 [-2.188 - -0.177]  [-3.065 - -0.602]  [-5.286 - -3.064] 

R2 0.751 0.753 0.780 0.782 0.816 0.818 
Each column represents a separate regression.  Each pair of columns (Models1-3) uses different fixed effects.  For each model, Model A imposes a 
time-invariant hedonic price function on TRI facilities and all hedonic controls, while Model B allows all coefficients to vary over time.  The 2nd 
panel shows the movement along the hedonic price functions, using the ex post function for the year-specific models, which gives the lower bound.  
The 3rd panel shows the product of marginal value times the observed 1995-2000 change in TRI exposures.  Standard errors in parentheses are 
clustered by grid cells.  Confidence intervals for welfare measures, in square brackets, are cluster bootstrapped.
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Appendix A.  Extensions and Discussion 

A.1.  Effects at Other Parts in the Distribution 

Estimating the average direct effect on the treated makes most sense for an ex-post welfare evalua-

tion of a policy.  However, in principle, one could imagine asking other questions of the data.  For 

example, perhaps one would want to know the direct effect of treatment for some other subset of 

houses ℋ′ under an alternative policy.  That is, given the equilibrium a*, we might want to know 

the average effect on prices of changing treatment status for that subset.  For such questions, one 

would merely adapt Assumption A2 to establish the conditional independence assumption needed 

to estimate DUEℋᇱ(𝑎∗)തതതതതതതതതതതതതത, a mix of the usual treatment-on-the-treated and treatment-on-the-controls 

estimands.11 

Under the appropriate assumptions, then, one could claim to identify the movement along 

the observed ex post hedonic function pa*( ) for any house in the set ℋ′ if its g were to have changed 

by some specified level.  Thus, the results of Section 3 generalize easily.  However, the effects 

identified would still be the movement along pa*( ). 

This movement along pa*( ), even for some margin of the distribution ℋ′ that differs from 

the actual ex post treatments, can be interpreted in two ways.  One possibility is that we are consid-

ering an alternative ex post distribution of g, evaluated relative to the same baseline a'.  For small 

tweaks from the actually observed ex post distribution, under which the observed price function is 

plausibly the same, we could continue to use the results of Section 4 to interpret the results as a 

lower bound for the welfare effects of such an alternative policy.  However, for a very different 

policy, treating a very different set ℋ′, we would expect a different ex post hedonic price function.  

While a movement along that alternative price function would still be a lower bound on ES, without 

                                                            
11 Specifically, the assumptions required would be: 

 E[ε୥భୀ଴௔∗ − ε଴ | x0, g௔∗ = 1, ℎ ∈ ℋ′]  =  E[ε୥భୀ଴௔∗ − ε଴ | x0, g௔∗ = 0]  

 E[ε୥భୀଵ௔∗ − ε଴ | x0, g௔∗ = 1]  =  E[ε୥భୀଵ௔∗ − ε଴ | x0, g௔∗ = 0, ℎ ∈ ℋ′].  

If ℋ′ is the entire sample then these assumptions collapse to the usual assumptions needed for an Average Treatment 
Effect (in this case, average direct unmediated treatment effect). 
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observing it such a lower bound cannot be constructed.  This is simply a recognition of the fact that 

ex post policy evaluation requires ex post data. 

But another way the set of treated houses ℋ′ may differ is to imagine an alterative counter-

factual equilibrium a' to which we are comparing the actual ex post equilibrium a*.  For example, 

one might one to compare the welfare effects of the actual policy to a smaller policy, in which a 

subset ℋ′′ would have been treated anyway.  The true ES would be different, then, but the ex post 

hedonic would remain unchanged and the lower bound can still be constructed from it.  One would 

simply evaluate DUE for the right set of houses.  In this way, the lower bound results of Section 4 

also extend to other margins of the distribution. 

A.2.  Open Cities. 

For expositional reasons it has been useful to think in terms of a closed region with a constant set of 

houses and households.  As briefly noted earlier, however, that assumption plays no role in the 

results of the paper.  Whether there are other cities (unaffected by the policy directly, that is, with 

no exogenous change in their distribution of g), with households endogenously moving in and out, 

would, of course, affect the true welfare measure ES.  It also would affect the distributional impacts 

of the policy.  Importantly, though, even if prices in the other cities are affected by the policy in the 

study region, there is no exogenous change in g in those cities and, presumably, no endogenous 

changes.  In the language of Section 3, with open cities there may be indirect effects elsewhere, but 

no direct effects.  And it is only those direct effects that are used to construct the lower bound. 

A.3.  Transactions Costs. 

In many hedonic applications, such as the regular, repeated purchase of computers, we might plau-

sibly take the choice to purchase a new model as exogenous to the change in attributes.  In other 

cases, such as the housing example emphasized in this paper, changes in available attributes might 

cause people to re-optimize to a new {g, x} bundle.  In the housing setting as well as other contexts, 

such as automobile purchases, the transactions costs of changing attribute bundles is not trivial. 

The analysis of Section 4 can be extended to include such mobility or other transactions 

costs.  In the case when there are no transactions costs, we can compute hypothetical compensations 



34 

at alternative prices and a given utility level, without specifying the cost-minimizing solution at the 

actual price giving rise to that utility level.  Transactions costs, however, create path dependency.  

Thus, we must at least specify a starting point from which the consumer moves when re-optimizing, 

because transactions costs will be a function of the initial as well as the final point.  In particular, in 

Equation (8), when evaluating the hypothetical compensation 𝑒̃௜  equivalent to the policy shock 

(when the consumer is constrained to be at the counterfactual bundle), we take the perspective of 

moving the consumer from their optimal ex post bundle.  That is, when we compute the hypothetical 

expenditure required to maintain ex post utility at the counterfactual price level and the counterfac-

tual bundle ൫g௜(𝑎′)𝑎′ , 𝐱௜(𝑎′)𝑎′ ൯, the required expenditure includes any money needed to pay transactions 

costs when moving back to the bundle consumed in a'.  In the case of an improvement, the notion 

here is that the consumer's willingness to accept compensation to forego the improvement requires 

paying transaction costs to move away from the improved point and back to a particular bundle ൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯. 

Denote the utility achieved in the ex post scenario a*, when households have to pay trans-

actions costs moving from some reference point R, as 𝑢௜் ஼(ோ),௔∗.  Let 𝑒௜் ஼(ோ)(𝑝, 𝑢) be the minimal 

cost of achieving some level of utility in the presence of transactions costs, when those transaction 

costs are incurred from a specific reference point R.  Then, in the first line in Equation (8), we 

replace the expression ෍ ൣ𝑒̃௜൫𝑝௔ᇱ൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗൯  − 𝑒௜(𝑝௔∗( ), 𝑢௜௔∗)൧ ≡ 𝐸𝑆௜  

with the expression ෍ ቂ𝑒̃௜் ஼(௔∗)ቀ𝑝௔ᇱ൫g௜(𝑎′)௔ᇱ , 𝐱௜(𝑎′)௔ᇱ ൯, g௜(𝑎′)௔ᇱ , 𝐱௜(𝑎′)௔ᇱ , 𝑢௜் ஼(ோ),௔∗ቁ − 𝑒௜் ஼(ோ)ቀ𝑝௔∗( ), 𝑢௜் ஼(ோ),௔∗ቁቃ ≡ 𝐸𝑆்஼.௜  

The term 𝑒௜் ஼(ோ)ቀ𝑝௔∗( ), 𝑢௜் ஼(ோ),௔∗ቁ is the expenditure required to achieve the ex post utility with 

transactions costs, 𝑢௜் ஼(ோ),௔∗, when the consumer actually does have to pay those transactions costs.  

The term 𝑒̃௜் ஼(௔∗)ቀ𝑝௔ᇱ൫g௜(𝑎′)௔ᇱ , 𝐱௜(𝑎′)௔ᇱ ൯, g௜(𝑎′)௔ᇱ , 𝐱௜(𝑎′)௔ᇱ , 𝑢௜் ஼(ோ),௔∗ቁ is, as before, the expenditure required to 
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maintain the ex post utility when constrained to be at the counterfactual bundle and given counter-

factual prices, but with two differences.  First, now transactions costs must be paid from the ex post 

point a* and figured into the required expenditure level.  Second, the utility level at which it is 

evaluated also differs. 

As shown in the proof in Apendix B, all other terms also remain unchanged, so the argument 

flows through without any other alterations.  We are left in the end with the expression: 

(10) 

𝑑𝑊 = ෍ ቂ𝑒̃௜் ஼(௔∗) ቀ𝑝௔∗ ቀg௜൫𝑎′൯௔ᇱ , 𝐱௜൫𝑎′൯௔ᇱ ቁ , g௜൫𝑎′൯௔ᇱ , 𝐱௜൫𝑎′൯௔ᇱ , 𝑢௜் ஼(ோ),௔∗ቁ – 𝑒௜் ஼(ோ)ቀ𝑝௔∗( ), 𝑢௜் ஼(ோ),௔∗ቁቃ௜+ ෍ ቂቀ𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗) − 𝑝௔∗൫g௛௔ᇱ, 𝐱௛௔ᇲ൯ቁ − ൫𝑐(g௛௔ᇱ, 𝐱௛௔∗) − 𝑐(g௛௔ᇱ, 𝐱௛௔ᇱ)൯ቃ௛+ ෍ ൫𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗)൯.௛
If it were not for the transactions costs paid, this expression would be the same as Equation (9) 

evaluated at a different utility level.  Consequently, most of the argument flows through.  However, 

we must account for the fact that the reference points for the two expenditure functions in Equa-

tion (10) differ:  One involves TC(a*) whereas the other involves TC(R).  In Appendix B, I show 

the lower bound result flows through with the following additional assumption. 

ASSUMPTION A4 (super-additivity).  Let TC(a, a') be the transactions cost of moving from a bundle 
a to a bundle a'.  Then TC(a, a'') ≤ TC(a, a') + TC(a', a''). 

This mild assumption states that the transactions cost of moving directly from bundle a to a'' is no 

higher than the transactions cost of moving first from a to a' and then from a' to a''.   

With this additional assumption, we have the following proposition. 

PROPOSITION 2.  Given A1, A3, and A4, 𝐻𝑇 ∙ DUEℋᇱ(𝑎∗)തതതതതതതതതതതതതത ≤ (ESTC + ∆profits) for an exogenous 
change in the distribution of g for a set of houses ℋ′.  The result holds even when hedonic prices, 
households, and landlords adjust to the change endogenously, with these effects included in the 
welfare measure.  It also holds when there are other changes in the economic environment poten-
tially shifting the price function or the levels of x over time, but it does not include these in the 
welfare measure. 

Proof:  See Appendix B 

Thus, the main results of this paper apply even in the case of transaction costs. 
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A.4.  The Direct Mediated Effect. 

The analysis in the body of the paper focused on the direct unmediated effect, in which we control 

for changes in x.  But some characteristics may be unobserved and some recent hedonics papers 

have intentionally omitted contemporaneous characteristics (while controlling for baseline levels), 

presumably to include mediated effects.  What if we do not control for such changes?  The conse-

quences differ for two cases.  First, if the changes in unobservables are simply correlated with the 

change in g globally, but not actually caused by it, then any quasi-experimental design where the 

source of variation in dg is exogenous may overcome this problem, such as an RD or other IV 

design.   

However, changes in x may well be caused by the policy-induced changes in g, either 

through resorting (Bayer et al. 2007) or through changes in the housing stock induced by the changes 

in g.  Unfortunately, in that case the observed measure would incorporate the gross benefits of gen-

eral equilibrium adjustments to x, without netting out the costs of providing them.  This can under-

mine the lower bound interpretation, although we can still establish sufficient conditions under 

which it holds.  To see this, rewrite Equation (9) as:  

(11) 

                𝑑𝑊 =   ෍ ൣ𝑒̃௜൫𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗൯ − 𝑒௜(𝑝௔∗( ), 𝑢௜௔∗)൧௜− ෍ ቀ𝑐(g௛௔ᇱ, 𝐱௛௔∗) − 𝑐൫g௛௔ᇱ, 𝐱௛௔ᇲ൯ቁ௛+ ෍ ൫𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔ᇱ)൯௛ . 
Here, the first set of terms remains the same as in Equation (9), as do the change in costs, 

while the last set of terms is the direct effect gross of any change in x, which is now what we observe.  

For the lower bound to still hold (i.e. for the last set of terms to be less than dW), we would need 

(12) 
෍ ൫𝑐(g௛௔ᇱ, 𝐱௛௔∗) − 𝑐(g௛௔ᇱ, 𝐱௛௔ᇱ)൯௛ ≤
         ෍ ൣ𝑒̃௜൫𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗൯ − 𝑒௜(𝑝௔∗( ), 𝑢௜௔∗)൧.௜  

Essentially, the change in costs from the change in x, which are associated with the change in g, 
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cannot be too big; more precisely, it cannot be bigger than the ES for households from the changes 

in g.  A sufficient, but not necessary, condition is that they are non-positive.  One plausible example 

is where the unobserved x is literally free.  For example, g might be transportation infrastructure, 

which could affect unobserved changed in air quality. 

Nevertheless, this analysis suggests under the most general case it is important to control for 

changes in x whenever possible to have the cleanest welfare interpretation.  It is worth emphasizing 

here that the question centers on changes in x, not levels.  Unobserved, unchanging levels of x cancel 

out in the comparison, which motivate the use of DD strategies at the outset.  
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APPENDIX B.  PROOF OF PROPOSITIONS. 

Proof of Proposition 1. 

As noted in the text, our measure of the change in welfare is: 

(8) 
𝑑𝑊 =   ෍ ቂ𝑒̃௜ ቀ𝑝௔ᇲ ቀg௜൫௔ᇲ൯௔ᇲ , 𝐱௜൫௔ᇲ൯௔ᇲ ቁ , g௜൫௔ᇲ൯௔ᇲ , 𝐱௜൫௔ᇲ൯௔ᇲ , 𝑢௜௔∗ቁ − 𝑒௜(𝑝௔∗( ), 𝑢௜௔∗)ቃ௜  
         + ෍ ቂቀ𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔ᇲ൫g௛௔ᇲ, 𝐱௛௔ᇲ൯ቁ − ቀ𝑐൫g௛௔ᇲ, 𝐱௛௔∗൯ − 𝑐൫g௛௔ᇲ, 𝐱௛௔ᇲ൯ቁቃ௛ . 

The right side of Equation (8) can be decomposed as follows: 

(13) 

𝑑𝑊 =  ෍ ቂ𝑒̃௜ ቀ𝑝௔∗ ቀg௜൫௔ᇲ൯௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ቁ , g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗ቁ − 𝑒௜(𝑝௔∗( ), 𝑢௜௔∗)ቃ௜           + ෍ ቂ𝑒̃௜ ቀ𝑝௔ᇱ ቀg௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇲ ቁ , g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗ቁ − 𝑒̃௜൫𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗൯ቃ௜         + ෍ ቀ𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔∗൫g௛௔ᇲ, 𝐱௛௔∗൯ቁ௛ + ෍ ቀ𝑝௔∗൫g௛௔ᇲ, 𝐱௛௔∗൯ − 𝑝௔∗൫g௛௔ᇲ, 𝐱௛௔ᇲ൯ቁ௛
          + ෍ ൫𝑝௔∗(g௛௔ᇱ, 𝐱௛௔ᇱ) − 𝑝௔ᇱ(g௛௔ᇱ, 𝐱௛௔ᇱ)൯௛ − ෍ ൫𝑐(g௛௔ᇱ, 𝐱௛௔∗) − 𝑐(g௛௔ᇱ, 𝐱௛௔ᇱ)൯.௛  

Fixing indices so that h=i(a'), which we can do because of the bijective mapping between houses 

and households, the expression can be re-arranged as: 

(14) 

𝑑𝑊 =   ෍ ൣ𝑒̃௜൫𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗൯ − 𝑒௜(𝑝௔∗( ), 𝑢௜௔∗)൧  ௜ + ෍ ൣ൫𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔ᇱ)൯ − ൫𝑐(g௛௔ᇱ, 𝐱௛௔∗) − 𝑐(g௛௔ᇱ, 𝐱௛௔ᇱ)൯൧௛+  ෍ ൫𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗)൯௛  

 

 + ෍ ቂቀ𝑒̃௜൫𝑝௔ᇱ൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗൯ − 𝑒̃௜൫𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗൯ቁ௜ − ቀ𝑝௔ᇱ൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯ − 𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯ቁቃ . 
Note that, for each i, the term in the fourth line minus the term in the last line is equal to zero by 

the definition of 𝑒̃:  The money necessary to maintain utility when (g, x) is held fixed is equal to 

the change in the price of the bundle (g, x).  Thus, the expression simplifies to: 
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(9) 

𝑑𝑊 =   ෍ ൣ𝑒̃௜൫𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜௔∗൯ − 𝑒௜(𝑝௔∗( ), 𝑢௜௔∗)൧௜          + ෍ ൣ൫𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔ᇱ)൯ − ൫𝑐(g௛௔ᇱ, 𝐱௛௔∗) − 𝑐(g௛௔ᇱ, 𝐱௛௔ᇱ)൯൧௛          +  ෍ ൫𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗)൯.௛
 

But, in the first line, the term in square brackets is non-negative for each i:  the value of a con-

strained expenditure minimization problem is no less than the value of an unconstrained expendi-

ture minimization problem at the same prices and utility.  Additionally, the second line also is 

non-negative by Assumption A3.  Thus, 

(15) ෍ ൫𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗)൯௛ ≤ 𝑑𝑊. 
This completes the proof.  The term on the left is the sum of price changes along the ex-post he-

donic holding x constant at its ex-post level, which is the measurement of interest, and it is less 

than the welfare measure. 

Note that Assumptions A1 and A3 are necessary but not sufficient conditions for the 

bound, in the sense that the proposition is not an if-and-only-if statement. 

Proof of Proposition 2 

Our measure of the change in welfare is now: 

(16) 

𝑑𝑊 = ෍ ቂ𝑒̃௜் ஼(௔∗) ቀ𝑝௔ᇱ ቀg௜൫௔ᇲ൯௔ᇱ , 𝐱௜൫௔ᇲ൯௔ᇱ ቁ , g௜൫௔ᇲ൯௔ᇱ , 𝐱௜൫௔ᇲ൯௔ᇱ , 𝑢௜் ஼(ோ),௔∗ቁ௜ − 𝑒௜் ஼(ோ)ቀ𝑝௔∗( ), 𝑢௜் ஼(ோ),௔∗ቁቃ+  ෍ ൣ൫𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔ᇱ(g௛௔ᇱ, 𝐱௛௔ᇱ)൯ − ൫𝑐(g௛௔ᇱ, 𝐱௛௔∗) − 𝑐(g௛௔ᇱ, 𝐱௛௔ᇱ)൯൧௛ . 
It is similar to Equation (8), but now 𝑢௜் ஼(ோ),௔∗ is the utility achieved in scenario a* when the 

household has to pay transaction costs from the reference pointy R.  Additionally, the expenditure 

function 𝑒௜் ஼(ோ)ቀ𝑝௔∗( ), 𝑢௜் ஼(ோ),௔∗ቁ is the same as in Equation (8) but it takes into account the ex-

penditure necessary to pay the transaction cost.  Likewise the constrained expenditure function 𝑒̃௜் ஼(௔∗)(  ) takes such expenditures into account. 
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Repeating the same steps as the proof for Proposition 1, we can derive the following ex-

pression: 

(17) 

   𝑑𝑊 = ෍ ቂ𝑒̃௜் ஼(௔∗)ቀ𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑢௜் ஼(ோ),௔∗ቁ − 𝑒௜் ஼(ோ)ቀ𝑝௔∗( ), 𝑢௜் ஼(ோ),௔∗ቁቃ௜               + ෍ ൣ൫𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔ᇱ)൯ − ൫𝑐(g௛௔ᇱ, 𝐱௛௔∗) − 𝑐(g௛௔ᇱ, 𝐱௛௔ᇱ)൯൧௛               + ෍ ൫𝑝௔∗(g௛௔∗, 𝐱௛௔∗) − 𝑝௔∗(g௛௔ᇱ, 𝐱௛௔∗)൯.௛
which parallels Equation (9). 

To prove the proposition, we must show that the first term, in square brackets, is non-nega-

tive for all i, as in the case without transaction costs. 

We will make use of two facts.  The first is that 

(18) 
𝑢௜் ஼(ோ),௔∗  =  𝑢൫(g௛௔∗, 𝐱௛௔∗), 𝑦 − 𝑝௔∗( g௛௔∗, 𝐱௛௔∗) − 𝑇𝐶(𝑅, 𝑎∗)൯ 

                ≥ 𝑢൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ , 𝑦 − 𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯ − 𝑇𝐶(𝑅, 𝑎ᇱ)൯. 

The first line simply states that the utility achieved is the utility from the services of the bundle 

consumed and expenditure on other goods, which is income minus the cost of the hedonic bundle 

minus the transaction costs to obtain it when the reference point is R.  The second line follows by 

revealed preference:  because (g௛௔∗, 𝐱௛௔∗) was chosen to maximize utility given the price function 

and the transaction costs from reference point R, it must yield higher utility than the bundle ൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ  ൯ given the same price function and same reference point for transactions.   

The second fact we will use is that  

(19) 

𝑒̃௜் ஼(௔∗) ቀ𝑝௔∗ ቀg௜൫௔ᇲ൯௔ᇱ , 𝐱௜൫௔ᇲ൯௔ᇱ ቁ , ቀg௜൫௔ᇲ൯௔ᇱ , 𝐱௜൫௔ᇲ൯௔ᇱ ቁ , 𝑢௜் ஼(ோ),௔∗ቁ− 𝑒̃௜் ஼(ோ) ቀ𝑝௔∗ ቀg௜൫௔ᇲ൯௔ᇱ , 𝐱௜൫௔ᇲ൯௔ᇱ ቁ , ቀg௜൫௔ᇲ൯௔ᇱ , 𝐱௜൫௔ᇲ൯௔ᇱ ቁ , 𝑢௜் ஼(ோ),௔∗ቁ = ൫𝑇𝐶(𝑅, 𝑎∗) + 𝑇𝐶(𝑎∗, 𝑎ᇱ)൯ − 𝑇𝐶(𝑅, 𝑎ᇱ). 

This expression merely states that the expenditure needed to achieve a given level of utility at a given 

bundle of hedonic attributes, under a given price function, but under two different transactions costs, 

differs only by the level of those transactions costs.  In one case, the household is going directly from 
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R to a', in another indirectly via a*.   

From these two facts, we can complete the proof through the following steps: 𝑒̃௜் ஼(௔∗) ቀ𝑝௔∗ ቀg௜(௔ᇱ)௔ᇱ , 𝐱௜൫௔ᇲ൯௔ᇲ ቁ , ൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, 𝑢௜் ஼(ோ),௔∗ቁ 

= 𝑒̃௜் ஼(ோ)ቀ𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, ൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, 𝑢௜் ஼(ோ),௔∗ቁ + ൫𝑇𝐶(𝑅, 𝑎∗) + 𝑇𝐶(𝑎∗, 𝑎′)൯ − 𝑇𝐶(𝑅, 𝑎′) 

≥ 𝑒̃௜் ஼(ோ) ൬𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, ൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, 𝑢 ቀ൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯, 𝑦 − 𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯ − 𝑇𝐶(𝑅, 𝑎′)ቁ൰ 

    + ൣ൫𝑇𝐶(𝑅, 𝑎∗) + 𝑇𝐶(𝑎∗, 𝑎′)൯ − 𝑇𝐶(𝑅, 𝑎′)൧ 
=  𝑒௜் ஼(ோ)ቀ𝑝௔∗( ), 𝑢௜் ஼(ோ),௔∗ቁ +  ൣ൫𝑇𝐶(𝑅, 𝑎∗) + 𝑇𝐶(𝑎∗, 𝑎′)൯ − 𝑇𝐶(𝑅, 𝑎′)൧ 
≥  𝑒௜் ஼(ோ)ቀ𝑝௔∗( ), 𝑢௜் ஼(ோ),௔∗ቁ. 

The first equality follows from re-arranging Equation (16).  Next, the inequality follows from Ex-

pression (18), plus the fact that the expenditure function is increasing in u.  The next equality follows 

from the fact that 𝑒̃௜் ஼(ோ)( ) = 𝑒௜் ஼(ோ)ቀ𝑝௔∗( ), 𝑢௜் ஼(ோ),௔∗ቁ=y.  That is, the expenditure necessary to 

achieve 𝑢௜் ஼(ோ),௔∗ when actually paying the prices of scenario a* and the transactions cost from R is 

just y; likewise, the expenditure necessary to achieve the utility of ൫g௜(𝑎′)௔ᇱ , 𝐱௜(𝑎′)௔ᇱ ൯ and numeraire con-

sumption 𝑦 − 𝑝௔∗൫g௜(௔ᇱ)௔ᇱ , 𝐱௜(௔ᇱ)௔ᇱ ൯ − 𝑇𝐶(𝑅, 𝑎ᇱ), when constrained to be at that hedonic bundle and to 

pay those prices and transactions costs is just y.  The last inequality follows by Assumption A4:  the 

transaction costs of moving directly from R to a' is no higher than that from moving indirectly via 

a*.  This completes the proof.   
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Appendix C.  Simulations 
Because the true welfare measure can never be known in an actual application, the lower bound 

discussed in this paper can only be illustrated and assessed using simulations.  Accordingly, this 

section illustrates the paper's findings by simulating hedonic housing equilibria and shocking the 

equilibria with changes to g.  Prices are determined in an equilibrium model, the "true" welfare 

measures calculated, and the lower bound welfare measures estimated using the econometric meth-

ods discussed above.  Of course, the bounds depend on the underlying parameters assumed. 

I simulated equilibria for 100 economies, each with 1000 households and houses.  House-

holds have utility over numeraire consumption, a scalar-valued index of local public goods g, and a 

scalar-valued index of housing attributes x.  Housing bundles are obtained by purchasing a lot of a 

fixed size with attributes g at the hedonic market price, and purchasing housing capital x at a constant 

price p.  Household's i's preferences for a house at lot j can be represented by an indirect utility 

function of the following form: 

(20) 𝑣௜൫𝑝, g௝, 𝑦௜൯ = ௬೔ାఊ୥ೕୣ୶୮ቆ౛౮౦ ቀഀ೔శഃ೔ౝೕቁ೛భశഁభశഁ ቇ  

These preferences represent a variant of the repackaging model, a standard approach to modeling 

differentiated products (see von Haefen 2007).  With these preferences, housing demand, condi-

tional on g, takes the form: 

(21) 𝑥௜∗|𝑔௝ = exp൫𝛼௜ + 𝛿௜g௝ + 𝛽ln𝑝 + ln𝑦൯. 
Thus, the characteristic of interest, g, enters preferences in two ways.  First, it enters through the 

demand for housing, x, as a weak complement.  Increases in g, ceteris paribus, increase the demand 

for x at a location (and the consumer surplus).  Second, through the additive term in the numerator 

of Equation (20), it enters as a perfect substitute to numeraire consumption.   

The utility parameters are set as follows: 𝛼 is uniformly distributed on (-2.2, -1.8), 𝛽 = −1.1, 𝛿 is triangularly distributed on (0.025, 0.035, 0.07) to allow outliers in tastes for public goods, and 
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𝛾=100.  Income is log-normally distributed with mean 11.1 and standard deviation 0.4 (and trun-

cated at $30,000 and $200,000).  These parameters were calibrated so that equilibrium rents (in-

cluding land and capital expenditures) as a percent of income range from 20% of income at the 10th 

percentile of the distribution to 41% at the 90th percentile, with a mean of 29%, which approximates 

the US expenditure shares for housing. 

The public good g is uniformly distributed on (1, 3) in the baseline scenario.  In the ex post 

scenarios, either 10%, 25%, or 50% of observations are "treated" by a policy.  The probability of 

being treated is linearly decreasing over the support of g1 from 0.75 at g1=1 to 0.25 at g1=3.  If a 

house is treated, its level of g improves such that g1 = g0 + (3-g0)/3 + 1.  Households respond to 

these policy shocks by re-optimizing.  In the base model, they do so without transactions costs, but 

in alternative models transactions costs are introduced at $2000, $10,000, or $20,000 (converted to 

a flow using a 5% discount rate). 

Finally, equilibrium prices in each scenario were perturbed by a two-component error.  One 

component, εjt, is normally and independently distributed and calibrated such that the standard de-

viation of the error is equal to 1% of the mean price.  This error term can be interpreted as either 

measurement error in price (the dependent variable) or alternatively as an unobserved characteristic 

of the home that enters preferences as a perfect substitute for the numeraire good (so it enters the 

price function orthogonally to g and x).  The second component, ξj, is fixed over time, but is corre-

lated both with g1 and with the treatment conditional on g1.  That is, it represents a time invariant 

factor correlated with public goods and with their improvement.  The existence of such a term mo-

tivates, econometrically, using DD models.   

Panel A of Table C1 shows the results from the main DD estimates (Equation 3c), when 

there are no transactions costs.  The first column shows the true ES across the three scenarios, with 

"small" the case where 10% of houses are treated (i.e., 100 out of 1,000), "medium" the case with 

25%, and "big" 50%.  The second column shows a "best estimate" of the lower bound, in which the 

true fixed effect and true value of housing capital are subtracted from the property value, and the 

remaining value from the second period fitted to ex post g using local linear regression.  These 
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values are not meant to represent a realistic econometric model, but rather to represent the lower 

bound construct to be estimated.  The next four columns give the estimates from four DD models.  

The models all condition on baseline levels as well as fixed effects, as in the generalized DD esti-

mator suggested by Kuminoff et al. (2010).  The first variant is a simple linear model such as Equa-

tion (3c), regressing changes in price on changes in g, changes in x, and baseline g and x.  The 

second uses a translog model regressing logged price on a quadratic of logged g and logged x, using 

both periods, and with fixed effects.  The third uses local linear regression in g, partialing out the 

effects of changes in x and baseline g and x (Yatchew 1998).  The final model uses an inverse-

probability weighted regression model with the double-robust property, first predicting the proba-

bility of treatment using a logit model based on a quadratic of baseline g, then predicting the change 

in price from treatment while regression-adjusting for changes in x, using the inverse of the first-

stage probabilities as weights. 

The best estimate of the lower bound is about 92% of the ES value in the small scenario, 

gradually decreasing as the scenario gets bigger to 75% in the biggest scenario.  This pattern makes 

sense:  for small changes, the marginal value approximates all the welfare information, so small 

changes along the price function can capture it well, whereas for larger changes the approximations 

fails to capture the curvature in the WTP function as well as any shifts in the price function.  Still, 

the estimates are the right order of magnitude and provide reasonably useful information.  The em-

pirical estimates are all relatively close to the best estimate of the lower bound, suggesting they can 

recover that lower bound and are useful if properly interpreted.  The results also are consistent with 

the simulations of Klaiber and Smith (2013), who find in their own simulation exercise that DD 

hedonics yield welfare estimates lower than a true measure of welfare (in their case, the sum of 

compensating variations). 

Panels B and C of Table C1 repeat the ES and "best estimate" columns, but report the results 

under alternative econometric designs.  Panel B uses the same basic econometric models as Panel A, 

but uses only a cross-sectional model with ex-post data.  Thus, the ξj component of the error is no 

longer differenced out.  Because it is positively correlated with g, this omission creates an upward 
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bias in the lower bound measures, which overstate the importance of g in the cross section.  This, of 

course, is the motivation for using difference-in-differences in the first place.  (Note the matching 

model is omitted from this panel, as selection into treatment is based on baseline data, which by 

assumption are not available.)  The table shows that the cells in the final four columns are higher 

than their counterparts in Panel A, but closer to the true welfare values.  However, there is something 

of a "two wrongs make a right" flavour to the results, as in this case an upper bias on a lower bound 

brings us closer to the true ES without overshooting it. 

Panel C returns to the DD model but now omits the regression adjustment for changes in x.  

These models represent the direct mediated effect discussed in Appendix A.4.  Because g and x are 

complements, these models, like those of Panel B, increase the estimates of the lower bound.  Again, 

all cells in Panel C are higher than their respective counterparts in Panel A, and all are higher than 

the "best estimate" of the lower bound.  They are no longer lower bounds relative to the true ES, 

suggesting that Equation (12) is not satisfied here. 

Table C2 reports the results when imposing transactions costs, in the case of the medium-

sized policy.  Again, the first column shows the true ES across the three scenarios, and the second 

column shows the "best estimate" of the lower bound.  Panel A shows the results from the main DD 

estimates.  The first row of the panel repeats the corresponding row from Table C1, with no trans-

actions costs, for comparison.  For the remaining rows, the true ES changes to reflect Equation (10) 

rather than (9), as discussed in Section A.3.  First, the ex post utility level is lower, as households 

have to pay transactions costs if they want to re-optimize; second, the compensation envisioned 

when placing somebody at their ex ante level of g includes the transactions costs to put them there.  

In these simulations, the latter effect slightly dominates, with the ES increasing from $1,527 to 

$1,933 as transactions costs increase.  Nevertheless, the patterns are similar to Table C1.  The best 

estimate of the movement along the ex-post hedonic continues to be a lower bound for ES, as do 

most of the empirical estimates, with the exception of the local linear model, which performs poorly 

in the high transactions-cost simulations).  Panel B shows the results from the cross-sectional mod-

els.  Again, ignoring the fixed effect biases the hedonic price function, leading to an upward bias on 
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a measure of a lower bound.  Ignoring changes in housing capital has a similar effect as in Panel C 

of Table C1 as well, again with an upward bias on the lower bound measure (these estimates are not 

reported but are available upon request). 
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Table C1.  Results of Simulations 

Scenario 

Median Value Across 100 Simulations 
(5th and 95th Percentiles in Parentheses) 

ES "Best Estimate" of 
Lower Bound Linear Translog Semi-parametric 

Local linear 
Semi-parametric 

Matching 

A.  Base Differences-in-Differences Model 

Small $508 
(398 - 588) 

$471 
(373 - 537) 

$435 
(352 – 498) 

$326 
(240 – 424) 

$680 
(421 – 1,307) 

$472 
(370 – 537) 

Medium $1,527 
(1,370 - 1,685) 

$1,293 
(1,173 - 1,393) 

$1,131 
(1,006 – 1,221) 

$1,021 
(858 – 1143) 

$1,516 
(1,157 – 2,157) 

$1,231 
(1,119 – 1,331) 

Large $3,219 
(3,054 - 3,406) 

$2,409 
(2,303 - 2,508) 

$2,102 
(2,019 – 2,223) 

$2,051 
(1,872 – 2,274) 

$2,416 
(2,090 – 3,064) 

$2,019 
(1,926 – 2,115) 

B.  Second Period Cross-Sectional Model 

Small $508 
(398 - 588) 

$471 
(373 - 537) 

$507 
(397 – 607) 

$590 
(423 – 763) 

$607 
(483 – 730) N/A 

Medium $1,527 
(1,370 - 1,685) 

$1,293 
(1,173 - 1,393) 

$1,435 
(1,306 – 1,580) 

$1,658 
(1,434 – 1,978) 

$1,686 
(1,531 – 1,832) N/A 

Large $3,219 
(3,054 - 3,406) 

$2,409 
(2,303 - 2,508) 

$2,975 
(2,822 – 3,167) 

$3,380 
(2,904 – 3,891) 

$3,314 
(3,101 – 3,479) N/A 

C.  Direct Mediated Effects (x omitted) 

Small $508 
(398 - 588) 

$471 
(373 - 537) 

$1,276 
(1,031 – 1,484) 

$1,160 
(950 – 1,386) 

$732 
(465 – 1,353) 

$1,298 
(1,053 – 1,511) 

Medium $1,527 
(1,370 - 1,685) 

$1,293 
(1,173 - 1,393) 

$3,225 
(2,912 – 3,493) 

$2,986 
(2,662 – 3,263) 

$1,554 
(1,2013 – 2,216) 

$3,253 
(2,942 – 3,523) 

Large $3,219 
(3,054 - 3,406) 

$2,409 
(2,303 - 2,508) 

$6,061 
(5,629 – 6,478) 

$5,728 
(5,342 – 6,074) 

$2,471 
(2,126 – 3,106) 

$5,975 
(5,627 – 6,366) 

This table shows the welfare effects and bounds in the simulated equilibria, for policies with small, medium, and large changes in g.  Each cell shows the median 
value across 100 simulations, plus the 5th and 95th percentiles.  The first column shows the true equivalent surplus.  The second shows the lower bound as the 
movement along the (known) price function.  The remaining four columns show empirical counterparts to this bound, using econometric estimators.  Panel A uses 
DD methods; Panel B uses only the ex-post cross section (ignoring time-invariant unobservables); and Panel C ignores changes in x.  
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Table C2.  Results of Simulations with Transactions Costs 

Transactions 
Cost 

Median Value Across 100 Simulations 
(5th and 95th Percentiles in Parentheses) 

ES "Best Estimate" 
of Lower Bound Linear Translog Semi-parametric

Local linear 
Semi-parametric

Matching 

A.  Base Differences-in-Differences Model 

None $1,527 
(1,370 - 1,685) 

$1,293 
(1,173 - 1,393) 

$1,131 
(1,006 – 1,221) 

$1,021 
(858 – 1143) 

$1,516 
(1,157 – 2,157) 

$1,231 
(1,119 – 1,331) 

$2,000 $1,616 
(1,469 - 1,776) 

$1,220 
(1,079 – 1,343) 

$891 
(742 – 1,014) 

$999 
(845 – 1,172) 

$1,069 
(874 – 1,353) 

$1,122 
(976 – 1,243) 

$10,000 $1,803 
(1,578 - 2,009) 

$866 
(512 – 1,117) 

$566 
(270 – 790) 

$710 
($328 – $959) 

$2,887 
(1,785 – 4,900) 

$668 
(325 – 938) 

$20,000 $1,933 
(1,435 - 2,144) 

$636 
(7 – 934) 

$531 
(-103 – 797) 

$467 
(-363 – 765) 

$5,206 
($2,904 – 10,073)

$521 
(-156 – 885) 

B.  Second Period Cross-Sectional Model 

None $1,527 
(1,370 - 1,685) 

$1,293 
(1,173 - 1,393) 

$1,435 
(1,306 – 1,580) 

$1,658 
(1,434 – 1,978) 

$1,613 
(1,433 – 1,829) N/A 

$2,000 $1,616 
(1,469 - 1,776) 

$1,220 
(1,079 – 1,343) 

$1,190 
(984 – 1354) 

$1,705 
(1,267 – 2,213) 

$1,613 
(1,432 – 1,830) N/A 

$10,000 $1,803 
(1,578 - 2,009) 

$866 
(512 – 1,117) 

$859 
(567 – 1,084) 

$1,335 
(1,032 – 1,715) 

$1,249 
(917 – 1,500) N/A 

$20,000 $1,933 
(1,435 - 2,144) 

$636 
(7 – 934) 

$834 
(213 – 1,085) 

$1,194 
(598 – 1,411) 

$1,028 
(393 – 1,316) N/A 

This table shows the welfare effects and bounds in the simulated equilibria, for the policy giving the "medium" change in g, under four different transactions costs 
of zero, $2,000, $10,000, and $20,000.  Each cell shows the median value across 100 simulations, plus the 5th and 95th percentiles.  The first column shows the true 
equivalent surplus.  The second shows the lower bound as the movement along the (known) price function.  The remaining four columns show empirical counter-
parts to this bound, using econometric estimators.  Panel A uses DD methods; Panel B uses only the ex-post cross section (ignoring time-invariant unobservables). 
 


